Reg. No. :

Name :

Second Year – March 2017

Time : 2½ Hours Cool-off time : 15 Minutes

Code No. 5053

Part – III

MATHEMATICS (COMMERCE)

Maximum : 80 Scores

General Instructions to Candidates :

- There is a 'cool-off time' of 15 minutes in addition to the writing time of $2\frac{1}{2}$ hrs.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുളളവരുമായി ആശയവിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

1. (a) If A is a 2×2 matrix and |A| = 1, then |2A| is _____

- (i) 1
- (ii) 2
- (iii) 3
- (iv) 4

(b) If
$$A = \begin{bmatrix} 3 & 0 & 1 \\ -1 & 1 & 2 \\ -2 & 5 & 1 \end{bmatrix}$$
, find A^{-1} . (Scores : 3)

2. (a)
$$\sin^{-1} \left[\sin \left(\frac{7\pi}{6} \right) \right]$$
 is equal to
(i) $\frac{\pi}{6}$
(ii) $\frac{5\pi}{6}$
(iii) $\frac{3\pi}{6}$
(iv) $\frac{7\pi}{6}$ (Score : 1)

(b) Prove that :

$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$$
 (Scores : 3)

3. (a)
$$A^{\mathrm{T}} = \begin{bmatrix} 1 & 7 & 3 \\ 0 & 5 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

Write A.

(Score : 1)

(Score : 1)

- (b) If A and B are symmetric matrices of the same order, then prove that (A + B) is also symmetric. (Scores : 2)
- (c) Express A = $\begin{bmatrix} 1 & 7 \\ 2 & 9 \end{bmatrix}$ as a sum of a symmetric and skew-symmetric matrices.

(Scores : 2)

1. (a)
$$A \sin_2 2 \times 2 \cos 3 \sin^2 |A| = 1 \cos 3 \sin 3 \cos^2 |2A| =$$

(i) 1
(ii) 2
(iii) 3
(iv) 4 (něcaođ : 1)
(b) $A = \begin{bmatrix} 3 & 0 & 1 \\ -1 & 1 & 2 \\ -2 & 5 & 1 \end{bmatrix}$ mound A^{-1} and A

3. (a) A^T =
$$\begin{bmatrix} 1 & 7 & 3 \\ 0 & 5 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
ആയാൽ A എഴുതുക. (സ്കോർ : 1)

(b) A, B എന്നിവ ഒരേ ഓർഡർ ഉള്ള രണ്ടു സിമട്രിക് മാട്രിക്സുകൾ ആയാൽ (A + B) സിമട്രിക് ആണെന്ന് തെളിയിക്കുക. (സ്കോർസ് : 2)

5053

3

P.T.O.

4. (a) The derivative of
$$2^{\sin x}$$
 is _____. (Score : 1)

(b) Find
$$\frac{dy}{dx}$$
 if $x^y = y^x$. (Scores : 2)

(c) If
$$y = ae^{5x} + be^{-5x}$$
, show that $\frac{d^2y}{dx^2} - 25 y = 0$. (Scores : 3)

5. (a)
$$\int \frac{1}{\cos^2 x} dx = \underline{\qquad}$$

(i) $\sec^2 x + C$
(ii) $\tan^2 x + C$
(iii) $\sec x + C$
(iv) $\tan x + C$
(Score : 1)

(b) Find
$$\int x \tan^{-1}x \, dx$$
. (Scores : 4)

6. Consider the vectors

$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k} \text{ and}$$

$$\vec{b} = 3\hat{i} - 7\hat{j} + \hat{k}.$$

(i) Write $\frac{\vec{a} + \vec{b}}{2}$. (Score : 1)

(ii) Find the unit vector in the direction of $\frac{\vec{a} + \vec{b}}{2}$. (Scores : 2)

(iii) Find the area of the parallelogram with adjacent sides \vec{a} and \vec{b} . (Scores : 3)

OR

Consider the vector

$$\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$$
(i) Find $|\vec{a}|$.
(ii) Find λ is \vec{a} is perpendicular to $\hat{i} + 3\hat{j} + \lambda\hat{k}$.
(Scores : 2)
(iii) Find a vector parallel to \vec{a} having magnitudes 7 units.
(Scores : 3)

4

(b)
$$x^y = y^x$$
 ആയാൽ $\frac{dy}{dx}$ കാണുക. (സ്കോർസ് : 2)

(c)
$$y = ae^{5x} + be^{-5x}$$
 ആയാൽ $\frac{d^2y}{dx^2} - 25 \ y = 0$ എന്നു തെളിയിക്കുക. (സ്കോർസ് : 3)

5. (a)
$$\int \frac{1}{\cos^2 x} dx = \underline{\qquad}$$

(i) $\sec^2 x + C$
(ii) $\tan^2 x + C$
(iii) $\sec x + C$
(iv) $\tan x + C$
(m'cabod': 1)
(b) $\int x \tan^{-1} x \, dx$ abomya.
(m'cabod': 4)

6.
$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k};$$

 $\vec{b} = 3\hat{i} - 7\hat{j} + \hat{k}$
എന്നീ വെക്ടറുകൾ പരിഗണിക്കുക.
 $\vec{a} + \vec{b}$

(i)
$$\frac{a+b}{2}$$
 എഴുതുക.(സ്കോർ : 1)(ii) $\frac{\vec{a}+\vec{b}}{2}$ ന്റെ ദിശയിലുള്ള യൂണിറ്റ് വെക്ടർ കാണുക.(സ്കോർസ് : 2)

$$(\mathrm{iii}) \stackrel{
m a}{a}, \stackrel{
m d}{b}$$
 എന്നിവ സമീപ വശങ്ങളായ സാമാന്തരികത്തിന്റെ പരപ്പളവ് കണ്ടുപിടിക്കുക.

(സ്കോർസ് : 3)

$$ec{a}=2\hat{i}-3\hat{j}+\hat{k}$$
 എന്ന വെക്ടർ പരിഗണിക്കുക.

(ii)
$$\vec{a}$$
 എന്ന വെക്ടർ $\hat{i} + 3\hat{j} + \lambda\hat{k}$ നു ലംബമായാൽ λ യുടെ വില കാണുക.

(സ്കോർസ് : 2)

 (iii) a നു സമാന്തരമായതും മാഗ്നിറ്റ്യൂഡ് 7 യൂണിറ്റ് ആയതുമായ മറ്റൊരു വെക്ടർ കാണുക.
 (സ്കോർസ് : 3)

P.T.O.

7. (a) Find the relationship between p and q so that the function

$$f(x) = \begin{cases} px+5 & \text{; if } x \le 5 \\ qx+2 & \text{; if } x > 5 \end{cases}$$

is continuous at $x = 5$. (Scores : 2)

(b) Find
$$\frac{dy}{dx}$$
 if $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right), 0 < x < \frac{1}{\sqrt{2}}$. (Scores : 3)

8. (a)
$$f: R \to R, f(x) = x + 3$$
. Then fof (1) is _____.
(i) 1
(ii) 3
(iii) 6
(iv) 7
(Score : 1)
(b) Consider $f: R \to R, f(x) = 4x + 5$.

- (i) Show that f is invertible. (Scores : 2)
- (ii) Find the inverse of f. (Scores : 2)

9. (a) The order of the differential equation

$$\left(\frac{y}{x}\right)\frac{d^2y}{dx^2} + \left(\frac{x\frac{dy}{dx} - y}{x^2}\right)\frac{dy}{dx} = 0 \text{ is } ____.$$
(Score : 1)

(b) Solve :

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + y^2}{2xy}$$
(Scores : 3)

10. (a) Slope of the tangent to the curve $y = 3x^2 + 2 \sin x$ at x = 0 is

- (i) 3
 (ii) 6
 (iii) 2
 (iv) 5
 (Score : 1)
- (b) The volume of a cube is increasing at the rate of 5 cm³/s. How fast is the surface area increasing when the length of an edge is 5 cm? (Scores : 3)

7. (a)
$$f(x) = \begin{cases} px+5 ; x \le 5 \\ qx+2 ; x > 5 \end{cases}$$

 a)m anovăradă $x = 5$ să amislmiji, în spanneshă p, q vi mazileijasa

 a)m anovăradă $x = 5$ să amislmiji, în spanneshă p, q vi mazileijas

 a)m anovăradă $x = 5$ să amislmiji, în spanneshă p, q vi mazileijas

 a)m anovăradă $x = 5$ să amislmiji, în spanneshă p, q vi mazileijas

 a)m anovăradă $x = 5$ să amislmiji, în spanneshă p, q vi mazileijas

 (niceasă în : 2)

 (b) $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right), 0 < x < \frac{1}{\sqrt{2}}$ spand $\frac{dy}{dx}$ asomijas.

 8. (a) $f: R \to R, f(x) = x + 3$ sami. fof $(1) =$ spană.

 (i) 1

 (ii) 3

 (iii) 6

 (iv) 7
 (niceasă : 1)

 (b) $f: R \to R, f(x) = 4x + 5$ sami.

 (i) f vi să vi sanni, sanglulasi, a.
 (miceasă i: 2)

 (ii) f ang videništi asomija.
 (miceasă i: 2)

9. (a)
$$\left(\frac{y}{x}\right)\frac{d^2y}{dx^2} + \left(\frac{x\frac{dy}{dx} - y}{x^2}\right)\frac{dy}{dx} = 0$$
 എന്ന ഡിഫറൻഷ്യൽ ഇക്വേഷന്റെ ഓർഡർ _____
ആണ്. (സ്കോർ : 1)

(b) നിർദ്ധാരണം ചെയ്യുക :

$$\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$$
 (тельзой :3)

10. (a) $y = 3x^2 + 2 \sin x$ എന്ന വക്രത്തിന് x = 0 ത്തിലുള്ള തൊടുവരയുടെ സ്ലോപ്പ്

- (i) 3
- (ii) 6
- (iii) 2
- (iv) 5 (พัฒาชิ:1)
- (b) ഒരു ക്യൂബിന്റെ വ്യാപ്തം 5 cm³/s എന്ന നിരക്കിൽ കൂടുന്നു. അതിന്റെ ഒരു വശത്തിന്റെ നീളം 5 cm ആകുമ്പോൾ ഉപരിതല പരപ്പളവിൽ ഉണ്ടാകുന്ന വർദ്ധനവ് കണക്കാക്കുക.
 (സ്കോർസ് : 3)

P.T.O.

5053

- 11. Consider the parabolas $y = x^2$ and $y^2 = x$.
 - (i) Draw a rough sketch and shade the region bounded by these parabolas. (Score : 1)
 - (ii) Find the area of the region bounded by the two parabolas. (Scores : 3)
- 12. A random variable X has the following probability distribution :

Х		0	1	2	3	4	5						
P(2	X)	0	k	2k	3k	3k	k						
(i) Find the value of k. (Score :													
(ii)	(ii) Find $P(X > 3)$.												
(iii)	Fii	nd P($(2 \leq 2)$	X <u>≤</u> 4)	•								

13. If a fair coin is tossed 10 times, find the probability of getting atleast six heads.

(Scores : 5)

OR

A card from a pack of 52 cards is lost. From the remaining cards, two cards are drawn and are found to be both diamonds. Find the probability of the lost card being a diamond. (Scores : 5)

14. (a) Evaluate

$$\begin{vmatrix} 1 & 7 & 5 \\ 0 & 3 & 2 \\ 0 & 9 & 7 \end{vmatrix}$$
 . (Score : 1)

(b) Prove that :

$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2.$$
 (Scores : 4)

15. Solve the LPP :

Minimize Z = -3x + 4ysubject to

$$x + 2y \le 8$$

 $3x + 2y \le 12$
 $x \ge 0, y \ge 0.$ (Scores : 4)

- 11. $y = x^2$, $y^2 = x$ എന്നീ പരാബൊളകൾ പരിഗണിക്കുക.
 - (i) ഒരു ഏകദേശ ചിത്രം വരച്ച് ഈ വക്രങ്ങൾക്കിടയിലുള്ള ഭാഗം അടയാള-പ്പെടുത്തുക. (സ്കോർ:1)
 - (ii) ഈ വക്രങ്ങൾക്കിടയിലുള്ള ഭാഗത്തിന്റെ പരപ്പളവ് കണ്ടുപിടിക്കുക. (സ്കോർസ് : 3)
- 12. X എന്ന റാൻഡം വേരിയബിളിന്റെ പ്രോബബിലിറ്റി ഡിസ്ട്രിബ്യൂഷൻ ചുവടെ കൊടുക്കുന്നു :

X	0	1	2	3	4	5
P(X)	0	k	2k	3k	3k	k

- (i) k-യുടെ വില കാണുക.
- (ii) P(X > 3) കാണുക.
- (iii) $P(2 \le X \le 4)$ കാണുക.
- 13. ഒരു നാണയം 10 പ്രാവിശ്യം ഇടുന്നു. ആറു ഹെഡുകൾ എങ്കിലും കിട്ടുന്നതിനുള്ള പ്രോബബിലിറ്റി കാണുക.
 (സ്കോർസ് : 5)

അല്ലെങ്കിൽ

52 കാർഡുകളുള്ള ഒരു പായ്ക്കറ്റിൽ നിന്നും ഒരു കാർഡ് നഷ്ടപ്പെട്ടു. ബാക്കിയുള്ള കാർഡുകളിൽ നിന്നും രണ്ടെണ്ണം എടുത്തു. അവ രണ്ടും ഡയമണ്ട് ആണെന്നു മനസ്സിലാക്കി. എങ്കിൽ നഷ്ടപ്പെട്ട കാർഡ് ഡയമണ്ട് ആകാനുള്ള പ്രോബബിലിറ്റി കാണുക. (സ്കോർസ് : 5)

14. (a)
$$\begin{vmatrix} 1 & 7 & 5 \\ 0 & 3 & 2 \\ 0 & 9 & 7 \end{vmatrix}$$
 കാണുക. (സ്കോർ : 1)
(b) $\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4) (4-x)^2$ എന്നു തെളിയിക്കുക. (സ്കോർസ് : 4)

15. LPP നിർദ്ധാരണം ചെയ്യുക :

```
Minimize Z = -3x + 4y
subject to
x + 2y < 8
```

9

P.T.O.

(സ്കോർ : 1)

(സ്കോർസ് : 2)

(സ്കോർസ് : 2)

- 16. Consider the points A(2, 3, 1) and B(3, -4, 5).
 - (i) Write the direction ratios of the line passing through A and B. (Score : 1)
 - (ii) Find the vector and Cartesian equations of the line through A and B. (Scores : 4)

OR

- (a) Write the direction cosines of the normal of the plane x + y + z = 1. (Score : 1)
- (b) Find the distance of the point (2, 5, -3) from the plane x + y + z = 1. (Scores : 4)
- 17. Tailor Raju is available on daily wages `600 per day and Somu on `620 per day. Raju can stitch 6 shirts and 5 pants per day while Somu can stitch 10 shirts and 3 pants per day. In order to stitch 60 shirts and 40 pants in the minimum cost of production, how many days each Raju and Somu should work ? What should be the minimum cost of production ? (Scores : 4)

- 16. A(2, 3, 1), B(3, -4, 5) എന്നീ ബിന്ദുക്കൾ പരിഗണിക്കുക.
 - (i) A, B എന്നീ ബിന്ദുക്കളിൽകൂടി കടന്നു പോകുന്ന വരയുടെ ഡയറക്ഷൻ റേഷ്യോകൾ എഴുതുക.
 (സ്കോർ : 1)
 - (ii) A, B എന്നീ ബിന്ദുക്കളിൽക്കൂടി കടന്നുപോകുന്ന വരയുടെ വെക്ടർ സമവാക്യവും കാർട്ടീഷ്യൻ സമവാക്യവും കാണുക. (സ്കോർസ് : 4)

അല്ലെങ്കിൽ

- (a) x + y + z = 1 എന്ന തലത്തിന്റെ നോർമലിന്റെ ഡയറക്ഷൻ കൊസൈൻസ് എഴുതുക.
 (സ്കോർ : 1)
- (b) x + y + z = 1 എന്ന തലത്തിൽ നിന്നും (2, 5, -3) എന്ന ബിന്ദുവിലേയ്ക്കുള്ള അകലം കാണുക. (സ്കോർസ് : 4)

 17. ഒരു ദിവസത്തേക്ക് ടെയിലർ രാജുവിന് 600 രൂപയും, സോമുവിന് 620 രൂപയുമാണ് ചാർജ്ജ്. രാജു ഒരു ദിവസം 6 ഷർട്ടും 5 പാന്റും തയ്ക്കും. സോമുവാകട്ടെ 10 ഷർട്ടും 3 പാന്റും തയ്ക്കും. നിർമ്മാണച്ചിലവ് ഏറ്റവും കുറയത്തക്കവിധത്തിൽ 60 ഷർട്ടും 40 പാന്റും തയ്ക്കാൻവേണ്ടി, രാജുവും സോമുവും എത്ര ദിവസം പണിയെടുക്കണം ? ഏറ്റവും കുറവ് നിർമ്മാണച്ചിലവ് എത്ര ? (സ്കോർസ് : 4)