

SECOND YEAR HIGHER SECONDARY SECOND TERMINAL EVALUATION, DECEMBER 2018

Part – III MATHEMATICS (SCIENCE)

Maximum: 80 Scores

Time: 2½ Hours

Cool-off Time: 15 Minutes

General Instructions to Candidates :

- There is a 'Cool off time' of 15 minutes in addition to the writing time of $2\frac{1}{2}$ hrs.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Use the 'Cool off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- ullet നിർദ്ദിഷ്ട $2\frac{1}{2}$ മണിക്കൂർ സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളവരുമായി ആശയവിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പർിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

Answer any six from 1 to 7. Each question carries 3 score. $(6\times3=18)$

- 1. $\vec{a} = i + 2j k$ then
 - a) Write the magnitude of \vec{a} (1)
 - b) Write a unit vector in the direction of \vec{a} (1)
 - c) Write the direction cosines of \vec{a} . (1)
- 2. Construct A 3 × 2 matrix $A = [a_{ij}]$ whose elements are given by

$$a_{ij} = \frac{\left|i - 3j\right|}{2} \tag{3}$$

- 3. If the function $f: R \to R$ be given by $f(x) = 8x^3$ and $g: R \to R$ be given by $g(x) = x^{\frac{1}{3}}$. Find f o g and g o f. (3)
- 4. Prove that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$

- 5. a) Verify Rolle's theorem for the function $f(x) = x^2 + 2x 8$ in [-4, 2]. (2)
 - b) Find the point on the curve $f(x) = x^2 + 2x 8$ at which tangent is parallel to x axis. (1)

Score

1 മൂതൽ 7 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 6 എണ്ണത്തിനു മാത്രം ഉത്തരമെഴുതുക. ഓരോ ചോദ്യത്തിനും 3 സ്കോർ വീതം. (6×3=18)

- $\vec{a} = i + 2j k \mod \omega$
 - a) \vec{a} യുടെ മാഗ്നിട്യൂഡ് കണ്ടുപിടിക്കുക. (1)
 - b) \vec{a} യുടെ അതേ ദിശയിലുള്ള യൂണിറ്റ് വെക്ടർ എഴുതുക. (1)
 - c) \overrightarrow{a} യുടെ ഡയറക്ഷൻ കൊസൈൻസ് എഴുതുക. (1)
- 2. $A = \begin{bmatrix} a_{ij} \end{bmatrix}$, $a_{ij} = \frac{|i-3j|}{2}$ ആകും വിധം A എന്ന 3×2 മെട്രിക്സ് നിർമിക്കുക. (3)
- f, g എന്നീ ഫാഗ്ഷനുകൾ യഥാക്രമാ $f:R\to R$, $f(x)=8x^3$ ഉറ $g:R\to R$, $g(x)=x^{\frac{1}{3}}$ ആയാൽ f o g യുറ g o f ഉറ കണ്ടുപിടിക്കുക. (3)

4.
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$
 എന്നു തെളിയിക്കുക. (3)

- 5. a) $f(x) = x^2 + 2x 8$ എന്ന ഫംഗ്ഷന് [-4, 2] എന്ന ഇന്റർവെലിൽ റോൾ സിദ്ധാന്തം ശരിയാണോ എന്ന് പരി ശോധിക്കുക. (2)
 - b) $f(x) = x^2 + 2x 8$ എന്ന വക്രത്തിന് x അക്ഷത്തിന് സമാന്തരമായ ടാൻജെന്റ് ഏതു ബിന്ദുവിലാണെന്ന് കണ്ടുപിടിക്കുക.

- 6. Using limit of a sum, evaluate \int_0^2 x 2 dx.
 6. \int_0^2 x 2 dx െൻ വില ലിമിറ്റ് ഓഫ് സം ഉപയോഗിച്ച് കണക്കാക്കുക.
- 7. Using integrals find the area enclosed by the circle $x^2 + y^2 = a^2$. **(3)**

Answer any eight from questions 8 to 17. Each question carries four scores.

 $(8 \times 4 = 32)$

8. Express the given matrix as the sum of a symmetric and a skew symmetric matrix

$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}. \tag{4}$$

- 9. Let * be an operation on $A = \{1, 2, 3, 6\}$ defined by a * b = LCM of (a, b), for all $a, b \in A$.
 - a) Draw a binary operation table for * on the set A. **(2)**
 - b) Find the identity element of * if any. (1)
 - c) Which elements of A are invertible? **(1)**
- 10. Consider the function $f(x) = \begin{cases} kx + 1 & \text{if } x \le \pi \\ \cos x & \text{if } x > \pi \end{cases}$ Find the value of k so that f(x) is continuous at $x = \pi$.

Score

- **(3)**
- 7. $x^2 + y^2 = a^2$ എന്ന വൃത്തത്തിന്റെ പരപ്പളവ് ഇന്റഗ്രേഷൻ ഉപയോഗിച്ച് കണക്കാക്കുക. (3)

 $oldsymbol{8}$ മുതൽ $oldsymbol{17}$ വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും f 8 എണ്ണത്തിനു മാത്രം ഉത്തരമെഴുതുക. ഓരോ ചോദ്യത്തിനും 4 സ്കോർ വീതം. $(8 \times 4 = 32)$

8. താഴെ കൊടുത്തിരിക്കുന്ന മെട്രിക്ലിനെ ഒരു സിമെട്രിക് മെട്രിക്ലിന്റെയും ന്യൂ സിമെട്രിക് മെട്രിക്സിന്റെയും തുകയായി എഴുതുക.

$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}.$$
 (4)

- $9. \ A = \{1, 2, 3, 6\}$ എന്ന ഗണത്തിൽ*എന്ന ക്രിയയെ a*b=a, b ഇവയുടെ LCMഎന്നു നിർവചിക്കുന്നു, എല്ലാ $a, b \in A$.
 - a) * ന്റെ ബൈനറി ഓപറേഷൻ ടേബിൾ നിർമ്മിക്കുക. **(2)**
 - b) * ന് ഐഡൻറ്റിറ്റി എലമെന്റ് ഉണ്ടെങ്കിൽ കണ്ടുപിടിച്ചെഴുതുക. **(1)**
 - c) A യിലെ ഇൻവെർട്ടിബിൾ ആയ എലമെന്റുകൾ എഴുതുക. **(1)**
- $10. \quad f(x) = \begin{cases} kx+1 & \text{if } x \le \pi \\ \cos x & \text{if } x > \pi \end{cases}$ എന്ന ഫംഗ്ഷൻ പരിഗണിക്കാക വ പരിഗണിക്കുക. $\mathbf{x} = \pi$ എന്ന ബിന്ദുവിൽ $\mathbf{f}(\mathbf{x})$ കണ്ടിന്യൂവസ് ഫംഗ്ഷനാകും വിധം k യുടെ വില കണ്ടുപിടിക്കുക. **(4)**

(1)

11. a) The principal value of $\cos^{-1}\left(\frac{-1}{2}\right)$ is _____

b) Write
$$tan^{-1} \left[\frac{\sqrt{1+x^2} - 1}{x} \right]$$
, $x \neq 0$ in the simplest form. (3)

12. Evaluate the following integrals

a)
$$\int \frac{dx}{x + x \log x}$$
 (2)

b)
$$\int \frac{dx}{9x^2 + 6x + 5}$$
 (2)

- 13. a) If \vec{a} has magnitude 6 units, which makes an angle 60° with the \vec{b} then the projection of \vec{a} on \vec{b} is
 - b) Find the projection of the vector $\vec{a} = 2i + 3j + 2k$ on $\vec{b} = i + 2j + k$. (3)
- 14. a) Find the intervals in which the function $f(x) = 4x^3 6x^2 72x + 30$ is strictly increasing or decreasing.
 - b) Find the points of local maximum and local minimum of the above function.

Score

b)
$$tan^{-1} \left[\frac{\sqrt{1+x^2}-1}{x} \right]$$
, $x \neq 0$ നെ ഏറ്റവും ലളിതമായ രൂപത്തിൽ എഴുതുക. (3)

12. താഴെ കൊടുത്തിരിക്കുന്ന ഇന്റ്ഗ്രൽസിന്റെ വില കണ്ടുപിടിക്കുക.

a)
$$\int \frac{dx}{x + x \log x}$$
 (2)

b)
$$\int \frac{dx}{9x^2 + 6x + 5}$$
 (2)

- 13. a) \vec{b} യുമായി 60° കോണുണ്ടാക്കുന്ന \vec{a} യുടെ മാഗ്നിട്യൂഡ് 6 യൂണിറ്റാണ്. എങ്കിൽ \vec{a} യുടെ \vec{b} യിൻ മേലുള്ള പ്രൊജക്ഷൻ = ______ (1)
 - b) $\vec{b} = i + 2j + k$ എന്ന വെക്ലറിൻമേലുള്ള $\vec{a} = 2i + 3j + 2k$ എന്ന വെക്ലറിന്റെ പ്രൊജക്ഷൻ കണ്ടുപിടിക്കുക. (3)
- 14. a) $f(x) = 4x^3 6x^2 72x + 30$ എന്ന ഫംഗ്ഷൻ സ്ത്രിക്രീലി ഇൻക്രീസിങ്ങ് അല്ലെങ്കിൽ ഡിക്രീസിങ്ങ് ആകുന്ന ഇന്റർ വെൽ കണ്ടുപിടിക്കുക. (2)
 - മെൽ കൊടുത്തിരിക്കുന്ന ഫംഗ്ഷൻ്റെ ലോക്കൽ മാക്സിമം അല്ലെങ്കിൽ ലോക്കൽ മിനിമം വിലകൾ കിട്ടുന്ന ബിന്ദുക്കൾ കണ്ടുപിടിക്കുക.

(3)

- 15. a) Find the points of intersection of the curves $y = x^2$ and $y^2 = x$. (1)
 - b) Find the area of the region bounded by the above two curves.

16. a) Write the order and degree of the differential equation

$$xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0$$
 (2)

b) Solve the differential equation

$$\frac{dy}{dx} = \frac{1 + y^2}{1 + x^2}$$
 (2)

17. Find the inverse of $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$ by row transformation

Answer any five from questions 18 to 24. Each question carries six score. $(5 \times 6 = 30)$

18. Solve the following system of linear equations using matrix method.

$$x - y + 2z = 7$$

 $3x + 4y - 5z = -5$
 $2x - y + 3z = 12$ (6)

19. a) Prove that

$$\sin^{-1}\left(\frac{3}{5}\right) - \sin^{-1}\left(\frac{8}{17}\right) = \cos^{-1}\left(\frac{84}{85}\right)$$
. (3)

b) Solve $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$

Score

15. a) $y = x^2$, $y^2 = x$ എന്നീ വക്രങ്ങൾ തമ്മിൽ കൂട്ടിമുട്ടുന്ന ബിന്ദുക്കൾ കണ്ടുപി ടിക്കുക. (1)

b) മേൽപറഞ്ഞ രണ്ടു വക്രങ്ങൾക്കി ടയിൽ ഉള്ള ഭാഗത്തിന്റെ പരപ്പളവ് **(3)** കണക്കാക്കുക.

16. a) $xy \frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0$ som ഡിഫറൻഷിയൽ സമവാക്യത്തിന്റെ ഡിഗ്രിയും ഓർഡറും എഴുതുക. **(2)**

b) $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ എന്ന ധിഫറൻഷിയൽ സമവാക്യത്തിന്റെ പരിഹാരം കണ്ടെത്തുക. (2)

17. $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$ on \emptyset ഇൻ വെഴ്സ്, റോട്രാൻസ്ഫോർമേഷൻ ഉപയോഗിച്ച് കണ്ടുപിടിക്കുക. **(4)**

18 മുതൽ 24 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെ ങ്കിലൂം 5 എണ്ണത്തിനു മാത്രം ഉത്തരമെഴുതുക. ഓരോ ചോദ്യത്തിനും 6 സ്റ്റോർ വീതം. $(5 \times 6 = 30)$

18. താഴെ കൊടുത്തിരിക്കുന്ന മെട്രിക്സ് സമവാക്യ ങ്ങളുടെ പരിഹാരം മെട്രിക്സ് രീതിയിൽ കാണുക.

$$x - y + 2z = 7$$

 $3x + 4y - 5z = -5$
 $2x - y + 3z = 12$ (6)

19. a)
$$\sin^{-1}\left(\frac{3}{5}\right) - \sin^{-1}\left(\frac{8}{17}\right) = \cos^{-1}\left(\frac{84}{85}\right)$$
 ആണെന്ന് തെളിയിക്കുക. (3)

b) $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$ හෙ പരിഹാരം കാണുക. (3)

b) If
$$y = (tan^{-1} x)^2$$
, show that
$$(1+x^2)^2 \frac{d^2 y}{dx^2} + 2x(1+x^2) \frac{dy}{dx} = 2$$
 (3)

- 21. a) Use differentials to approximate $\sqrt{36.6}$. (3)
 - b) A man of height 2 meters walks at a uniform speed of 5km/h, away from the lamp post which is 6 meters height. Find the rate at which the length of his shadow increases. (3)

22. a) The value of
$$\int e^{x} (f(x) + f'(x)) dx =$$
(1)

b) Hence evaluate
$$\int \frac{(x^2+1)e^x dx}{(x+1)^2}$$
 (2)

c) Evaluate
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}}.$$
 (3)

23. a) Find the integrating factor of the linear differential equation

$$\frac{dy}{dx} - y = \cos x \,. \tag{2}$$

b) Solve the above linear differential equation. (4)

Score

(3)

20. a)
$$x = a \left(\cos t + \log \tan \left(\frac{t}{2} \right) \right), y = a \sin t$$

ആയാൽ $\frac{dy}{dx}$ കണക്കാക്കുക. (3)

b)
$$y = (tan^{-1} x)^2$$
 ඟෙනගති,

$$(1+x^2)^2 \frac{d^2 y}{dx^2} + 2x(1+x^2) \frac{dy}{dx} = 2$$

21. a) ഡിഫറെൻഷിയൽ ഉപയോഗിച്ച്
$$\sqrt{36.6}$$
 ൻ്റെ ഏകദേശ വില കണക്കാക്കുക. (3)

ആണെന്ന് തെളിയിക്കുക.

b) 2മീറ്റർഉയരമുള്ള ഒരാൾ 5km/h, വേഗത്തിൽ, 6 മീറ്റർ ഉയരമുള്ള വിളക്കുകാലിൽ നിന്ന് അകലേക്ക് നടന്നു പോകുന്നു. അയാളുടെ നിഴലിന്റെ നീളം മാറുന്നതിന്റെ തോത് കണ്ടുപിടിക്കുക. (3)

22. a)
$$\int e^{x} (f(x) + f'(x)) dx$$
 ന്റെ വില = ______ (1)

b) മേൽ ഫലം ഉപയോഗിച്ച്
$$\int \frac{(x^2+l)e^x\,dx}{(x+l)^2}$$
ന്റെ വില കണക്കാക്കുക്പ്. (2)

c)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{1+\sqrt{\tan x}}$$
 കണ്ടുപിടിക്കുക. (3)

- 23. a) $\frac{dy}{dx} y = \cos x$ എന്ന ലീനിയർ ഡിഫ്ഫെറെൻഷിയൽ സമവാക്യത്തിന്റെ ഇന്റെഗ്രേറ്റിങ്ങ് ഫാക്ടർ കണ്ടുപിടിക്കുക. (2)
 - b) മേൽ ലീനിയർ ഡിഫ്ഫെറെൻഷിയൽ സമവാക്യത്തിന്റെ പരിഹാരം കണ്ടു പിടിക്കുക.
 (4)

24. $\vec{a} = 3i + j + 4k, \vec{b} = i - j + k$

- a) Find a unit vector perpendicular to both \vec{a} and \vec{b} . (2)
- b) Write the area of a triangle with \vec{a} and \vec{b} as its two sides. (1)
- c) Find \vec{c} such that the volume of the parallelepiped with \vec{a} , \vec{b} and \vec{c} as its adjacent sides is 40 cubic unit.

Score

24. $\vec{a} = 3i + j + 4k$, $\vec{b} = i - j + k$

- a) \overrightarrow{a} നും \overrightarrow{b} നും ലംബമായ ഒരു യൂണിറ്റ് വെക്കർ കണ്ടുപിടിക്കുക. (2)
- b) \vec{a} , \vec{b} ഇവ വശങ്ങളായി വരുന്ന ഒരു ത്രികോണത്തിന്റെ പരപ്പളവ് എഴുതുക. (1)
- c) \vec{a} , \vec{b} , \vec{c} ഇവ സമീപ വശങ്ങളായി വരുന്ന പാരലെലൊപിപ്പെഡിന്റെ ഉള്ളളവ് 40 ഘന യൂണിറ്റാകത്തക്ക വിധം \vec{c} എന്ന വെക്ടർ കണ്ടുപി ടിക്കുക. (3)